\and\or左分配
theorem and_or_distl (A B C: wff): $ A \and (B \or C) \iff A \and B \or (A \and C) $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iff_comp | (A \and (B \or C) \imp A \and B \or (A \and C)) \imp (A \and B \or (A \and C) \imp A \and (B \or C)) \imp (A \and (B \or C) \iff A \and B \or (A \and C)) |
|
| 2 | imp_tran | (\neg (A \imp \neg (\neg B \imp C)) \imp (A \imp \neg C) \imp \neg (A \imp \neg B)) \imp (((A \imp \neg C) \imp \neg (A \imp \neg B)) \imp \neg \neg (A \imp \neg B) \imp \neg (A \imp \neg C)) \imp \neg (A \imp \neg (\neg B \imp C)) \imp \neg \neg (A \imp \neg B) \imp \neg (A \imp \neg C) |
|
| 3 | imp_imp_swapl | ((A \imp \neg C) \imp \neg (A \imp \neg (\neg B \imp C)) \imp \neg (A \imp \neg B)) \imp \neg (A \imp \neg (\neg B \imp C)) \imp (A \imp \neg C) \imp \neg (A \imp \neg B) |
|
| 4 | imp_tran | ((A \imp \neg C) \imp (A \imp \neg B) \imp A \imp \neg (\neg B \imp C)) \imp (((A \imp \neg B) \imp A \imp \neg (\neg B \imp C)) \imp \neg (A \imp \neg (\neg B \imp C)) \imp \neg (A \imp \neg B)) \imp (A \imp \neg C) \imp \neg (A \imp \neg (\neg B \imp C)) \imp \neg (A \imp \neg B) |
|
| 5 | imp_tran | ((A \imp \neg C) \imp A \imp \neg B \imp \neg (\neg B \imp C)) \imp ((A \imp \neg B \imp \neg (\neg B \imp C)) \imp (A \imp \neg B) \imp A \imp \neg (\neg B \imp C)) \imp (A \imp \neg C) \imp (A \imp \neg B) \imp A \imp \neg (\neg B \imp C) |
|
| 6 | imp_introl_imp | (\neg C \imp \neg B \imp \neg (\neg B \imp C)) \imp (A \imp \neg C) \imp A \imp \neg B \imp \neg (\neg B \imp C) |
|
| 7 | imp_tran | (\neg C \imp (\neg B \imp C) \imp B) \imp (((\neg B \imp C) \imp B) \imp \neg B \imp \neg (\neg B \imp C)) \imp \neg C \imp \neg B \imp \neg (\neg B \imp C) |
|
| 8 | iff_eliml | ((\neg B \imp C) \imp \neg C \imp B \iff \neg C \imp (\neg B \imp C) \imp B) \imp ((\neg B \imp C) \imp \neg C \imp B) \imp \neg C \imp (\neg B \imp C) \imp B |
|
| 9 | imp_imp_perml | (\neg B \imp C) \imp \neg C \imp B \iff \neg C \imp (\neg B \imp C) \imp B |
|
| 10 | 8, 9 | ax_mp | ((\neg B \imp C) \imp \neg C \imp B) \imp \neg C \imp (\neg B \imp C) \imp B |
| 11 | neg_imp_swap | (\neg B \imp C) \imp \neg C \imp B |
|
| 12 | 10, 11 | ax_mp | \neg C \imp (\neg B \imp C) \imp B |
| 13 | 7, 12 | ax_mp | (((\neg B \imp C) \imp B) \imp \neg B \imp \neg (\neg B \imp C)) \imp \neg C \imp \neg B \imp \neg (\neg B \imp C) |
| 14 | imp_introrev_neg | ((\neg B \imp C) \imp B) \imp \neg B \imp \neg (\neg B \imp C) |
|
| 15 | 13, 14 | ax_mp | \neg C \imp \neg B \imp \neg (\neg B \imp C) |
| 16 | 6, 15 | ax_mp | (A \imp \neg C) \imp A \imp \neg B \imp \neg (\neg B \imp C) |
| 17 | 5, 16 | ax_mp | ((A \imp \neg B \imp \neg (\neg B \imp C)) \imp (A \imp \neg B) \imp A \imp \neg (\neg B \imp C)) \imp (A \imp \neg C) \imp (A \imp \neg B) \imp A \imp \neg (\neg B \imp C) |
| 18 | imp_imp_insl | (A \imp \neg B \imp \neg (\neg B \imp C)) \imp (A \imp \neg B) \imp A \imp \neg (\neg B \imp C) |
|
| 19 | 17, 18 | ax_mp | (A \imp \neg C) \imp (A \imp \neg B) \imp A \imp \neg (\neg B \imp C) |
| 20 | 4, 19 | ax_mp | (((A \imp \neg B) \imp A \imp \neg (\neg B \imp C)) \imp \neg (A \imp \neg (\neg B \imp C)) \imp \neg (A \imp \neg B)) \imp (A \imp \neg C) \imp \neg (A \imp \neg (\neg B \imp C)) \imp \neg (A \imp \neg B) |
| 21 | imp_introrev_neg | ((A \imp \neg B) \imp A \imp \neg (\neg B \imp C)) \imp \neg (A \imp \neg (\neg B \imp C)) \imp \neg (A \imp \neg B) |
|
| 22 | 20, 21 | ax_mp | (A \imp \neg C) \imp \neg (A \imp \neg (\neg B \imp C)) \imp \neg (A \imp \neg B) |
| 23 | 3, 22 | ax_mp | \neg (A \imp \neg (\neg B \imp C)) \imp (A \imp \neg C) \imp \neg (A \imp \neg B) |
| 24 | 2, 23 | ax_mp | (((A \imp \neg C) \imp \neg (A \imp \neg B)) \imp \neg \neg (A \imp \neg B) \imp \neg (A \imp \neg C)) \imp \neg (A \imp \neg (\neg B \imp C)) \imp \neg \neg (A \imp \neg B) \imp \neg (A \imp \neg C) |
| 25 | imp_introrev_neg | ((A \imp \neg C) \imp \neg (A \imp \neg B)) \imp \neg \neg (A \imp \neg B) \imp \neg (A \imp \neg C) |
|
| 26 | 24, 25 | ax_mp | \neg (A \imp \neg (\neg B \imp C)) \imp \neg \neg (A \imp \neg B) \imp \neg (A \imp \neg C) |
| 27 | 26 | conv or | \neg (A \imp \neg (B \or C)) \imp \neg (A \imp \neg B) \or \neg (A \imp \neg C) |
| 28 | 27 | conv and | A \and (B \or C) \imp A \and B \or (A \and C) |
| 29 | 1, 28 | ax_mp | (A \and B \or (A \and C) \imp A \and (B \or C)) \imp (A \and (B \or C) \iff A \and B \or (A \and C)) |
| 30 | imp_mergel_neg_imp | (\neg (A \imp \neg B) \imp \neg (A \imp \neg (\neg B \imp C))) \imp (\neg (A \imp \neg C) \imp \neg (A \imp \neg (\neg B \imp C))) \imp (\neg \neg (A \imp \neg B) \imp \neg (A \imp \neg C)) \imp \neg (A \imp \neg (\neg B \imp C)) |
|
| 31 | imp_introrev_neg | ((A \imp \neg (\neg B \imp C)) \imp A \imp \neg B) \imp \neg (A \imp \neg B) \imp \neg (A \imp \neg (\neg B \imp C)) |
|
| 32 | imp_introl_imp | (\neg (\neg B \imp C) \imp \neg B) \imp (A \imp \neg (\neg B \imp C)) \imp A \imp \neg B |
|
| 33 | imp_introrev_neg | (B \imp \neg B \imp C) \imp \neg (\neg B \imp C) \imp \neg B |
|
| 34 | intror_neg_imp | B \imp \neg B \imp C |
|
| 35 | 33, 34 | ax_mp | \neg (\neg B \imp C) \imp \neg B |
| 36 | 32, 35 | ax_mp | (A \imp \neg (\neg B \imp C)) \imp A \imp \neg B |
| 37 | 31, 36 | ax_mp | \neg (A \imp \neg B) \imp \neg (A \imp \neg (\neg B \imp C)) |
| 38 | 30, 37 | ax_mp | (\neg (A \imp \neg C) \imp \neg (A \imp \neg (\neg B \imp C))) \imp (\neg \neg (A \imp \neg B) \imp \neg (A \imp \neg C)) \imp \neg (A \imp \neg (\neg B \imp C)) |
| 39 | imp_introrev_neg | ((A \imp \neg (\neg B \imp C)) \imp A \imp \neg C) \imp \neg (A \imp \neg C) \imp \neg (A \imp \neg (\neg B \imp C)) |
|
| 40 | imp_introl_imp | (\neg (\neg B \imp C) \imp \neg C) \imp (A \imp \neg (\neg B \imp C)) \imp A \imp \neg C |
|
| 41 | imp_introrev_neg | (C \imp \neg B \imp C) \imp \neg (\neg B \imp C) \imp \neg C |
|
| 42 | introl_imp | C \imp \neg B \imp C |
|
| 43 | 41, 42 | ax_mp | \neg (\neg B \imp C) \imp \neg C |
| 44 | 40, 43 | ax_mp | (A \imp \neg (\neg B \imp C)) \imp A \imp \neg C |
| 45 | 39, 44 | ax_mp | \neg (A \imp \neg C) \imp \neg (A \imp \neg (\neg B \imp C)) |
| 46 | 38, 45 | ax_mp | (\neg \neg (A \imp \neg B) \imp \neg (A \imp \neg C)) \imp \neg (A \imp \neg (\neg B \imp C)) |
| 47 | 46 | conv and | (\neg (A \and B) \imp A \and C) \imp A \and (\neg B \imp C) |
| 48 | 47 | conv or | A \and B \or (A \and C) \imp A \and (B \or C) |
| 49 | 29, 48 | ax_mp | A \and (B \or C) \iff A \and B \or (A \and C) |