Theorem
true_proof
≪
|
index
|
src
|
≫
\true证明
theorem true_proof: $ \true $;
Step
Hyp
Ref
Expression
1
imp_refl
\fo x x = x \imp \fo x x = x
2
1
conv
true
\true
Axiom use
Logic
(
ax_mp
,
ax_1
,
ax_2
)