\and真值表:wff \and \false \iff \false
theorem wff_and_false_iff_false (A: wff): $ A \and \false \iff \false $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iff_intro_neg | (A \imp \neg \false \iff \true) \imp (\neg (A \imp \neg \false) \iff \neg \true) |
|
| 2 | prov_iff_true | (A \imp \neg \false) \imp (A \imp \neg \false \iff \true) |
|
| 3 | imp_tran | (A \imp \true) \imp (\true \imp \neg \neg \true) \imp A \imp \neg \neg \true |
|
| 4 | true_comp | A \imp \true |
|
| 5 | 3, 4 | ax_mp | (\true \imp \neg \neg \true) \imp A \imp \neg \neg \true |
| 6 | negneg_intro | \true \imp \neg \neg \true |
|
| 7 | 5, 6 | ax_mp | A \imp \neg \neg \true |
| 8 | 7 | conv false | A \imp \neg \false |
| 9 | 2, 8 | ax_mp | A \imp \neg \false \iff \true |
| 10 | 1, 9 | ax_mp | \neg (A \imp \neg \false) \iff \neg \true |
| 11 | 10 | conv false | \neg (A \imp \neg \false) \iff \false |
| 12 | 11 | conv and | A \and \false \iff \false |