Theorem wff_and_true_iff_self | index | src |

\and真值表:A \and \true \iff A

theorem wff_and_true_iff_self (A: wff): $ A \and \true \iff A $;
StepHypRefExpression
1 iff_tran
(\neg (A \imp \neg \true) \iff \neg \neg A) \imp (\neg \neg A \iff A) \imp (\neg (A \imp \neg \true) \iff A)
2 iff_intro_neg
(A \imp \neg \true \iff \neg A) \imp (\neg (A \imp \neg \true) \iff \neg \neg A)
3 wff_imp_false_iff_neg_wff
A \imp \false \iff \neg A
4 3 conv false
A \imp \neg \true \iff \neg A
5 2, 4 ax_mp
\neg (A \imp \neg \true) \iff \neg \neg A
6 1, 5 ax_mp
(\neg \neg A \iff A) \imp (\neg (A \imp \neg \true) \iff A)
7 iff_symm
(A \iff \neg \neg A) \imp (\neg \neg A \iff A)
8 negneg_alloc
A \iff \neg \neg A
9 7, 8 ax_mp
\neg \neg A \iff A
10 6, 9 ax_mp
\neg (A \imp \neg \true) \iff A
11 10 conv and
A \and \true \iff A

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3)