Theorem wff_or_false_iff_wff | index | src |

\or真值表:wff \or \false \iff wff

theorem wff_or_false_iff_wff (A: wff): $ A \or \false \iff A $;
StepHypRefExpression
1 iff_tran
(\neg A \imp \neg \true \iff \true \imp A) \imp (\true \imp A \iff A) \imp (\neg A \imp \neg \true \iff A)
2 iff_symm
(\true \imp A \iff \neg A \imp \neg \true) \imp (\neg A \imp \neg \true \iff \true \imp A)
3 imp_allocrev_neg
\true \imp A \iff \neg A \imp \neg \true
4 2, 3 ax_mp
\neg A \imp \neg \true \iff \true \imp A
5 1, 4 ax_mp
(\true \imp A \iff A) \imp (\neg A \imp \neg \true \iff A)
6 trueimp_eqv_self
\true \imp A \iff A
7 5, 6 ax_mp
\neg A \imp \neg \true \iff A
8 7 conv false, or
A \or \false \iff A

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3)