imp_introls_ex_nfrs的假设和公式无关形式(不可引用)
theorem _hyp_imp_introls_ex_nfrs {x: set} (G A B: wff x):
$ \nf x G $ >
$ \nf x B $ >
$ G \imp A \imp B $ >
$ G \imp \ex x A \imp B $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp_tran | (G \imp \neg B \imp \fo x \neg A) \imp ((\neg B \imp \fo x \neg A) \imp \ex x A \imp B) \imp G \imp \ex x A \imp B |
|
| 2 | hyp g | \nf x G |
|
| 3 | hyp n | \nf x B |
|
| 4 | 3 | _nf_clos_neg | \nf x \neg B |
| 5 | imp_tran | (G \imp A \imp B) \imp ((A \imp B) \imp \neg B \imp \neg A) \imp G \imp \neg B \imp \neg A |
|
| 6 | hyp h | G \imp A \imp B |
|
| 7 | 5, 6 | ax_mp | ((A \imp B) \imp \neg B \imp \neg A) \imp G \imp \neg B \imp \neg A |
| 8 | imp_introrev_neg | (A \imp B) \imp \neg B \imp \neg A |
|
| 9 | 7, 8 | ax_mp | G \imp \neg B \imp \neg A |
| 10 | 2, 4, 9 | _hyp_imp_intrors_fo_nfls | G \imp \neg B \imp \fo x \neg A |
| 11 | 1, 10 | ax_mp | ((\neg B \imp \fo x \neg A) \imp \ex x A \imp B) \imp G \imp \ex x A \imp B |
| 12 | neg_imp_swap | (\neg B \imp \fo x \neg A) \imp \neg \fo x \neg A \imp B |
|
| 13 | 12 | conv ex | (\neg B \imp \fo x \neg A) \imp \ex x A \imp B |
| 14 | 11, 13 | ax_mp | G \imp \ex x A \imp B |