Theorem _hyp_imp_introls_ex_nfrs | index | src |

imp_introls_ex_nfrs的假设和公式无关形式(不可引用)

theorem _hyp_imp_introls_ex_nfrs {x: set} (G A B: wff x):
  $ \nf x G $ >
  $ \nf x B $ >
  $ G \imp A \imp B $ >
  $ G \imp \ex x A \imp B $;
StepHypRefExpression
1 imp_tran
(G \imp \neg B \imp \fo x \neg A) \imp ((\neg B \imp \fo x \neg A) \imp \ex x A \imp B) \imp G \imp \ex x A \imp B
2 hyp g
\nf x G
3 hyp n
\nf x B
4 3 _nf_clos_neg
\nf x \neg B
5 imp_tran
(G \imp A \imp B) \imp ((A \imp B) \imp \neg B \imp \neg A) \imp G \imp \neg B \imp \neg A
6 hyp h
G \imp A \imp B
7 5, 6 ax_mp
((A \imp B) \imp \neg B \imp \neg A) \imp G \imp \neg B \imp \neg A
8 imp_introrev_neg
(A \imp B) \imp \neg B \imp \neg A
9 7, 8 ax_mp
G \imp \neg B \imp \neg A
10 2, 4, 9 _hyp_imp_intrors_fo_nfls
G \imp \neg B \imp \fo x \neg A
11 1, 10 ax_mp
((\neg B \imp \fo x \neg A) \imp \ex x A \imp B) \imp G \imp \ex x A \imp B
12 neg_imp_swap
(\neg B \imp \fo x \neg A) \imp \neg \fo x \neg A \imp B
13 12 conv ex
(\neg B \imp \fo x \neg A) \imp \ex x A \imp B
14 11, 13 ax_mp
G \imp \ex x A \imp B

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3, ax_gen, ax_4, ax_5, ax_6, ax_7, ax_12)