\nf闭包\nf不同变元(不可引用)
theorem _nf_clos_nf_difvar {x y: set} (A: wff x y):
$ \nf x A $ >
$ \nf x \nf y A $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hyp h | \nf x A |
|
| 2 | 1 | _nf_clos_ex_difvar | \nf x \ex y A |
| 3 | 1 | _nf_clos_fo_difvar | \nf x \fo y A |
| 4 | 2, 3 | _nf_clos_imp | \nf x (\ex y A \imp \fo y A) |
| 5 | 4 | conv nf | \nf x \nf y A |