Theorem _nf_clos_nf_difvar | index | src |

\nf闭包\nf不同变元(不可引用)

theorem _nf_clos_nf_difvar {x y: set} (A: wff x y):
  $ \nf x A $ >
  $ \nf x \nf y A $;
StepHypRefExpression
1 hyp h
\nf x A
2 1 _nf_clos_ex_difvar
\nf x \ex y A
3 1 _nf_clos_fo_difvar
\nf x \fo y A
4 2, 3 _nf_clos_imp
\nf x (\ex y A \imp \fo y A)
5 4 conv nf
\nf x \nf y A

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3, ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12)