\nf闭包\fo不同变元(不可引用)
theorem _nf_clos_fo_difvar {x y: set} (A: wff x y):
$ \nf x A $ >
$ \nf x \fo y A $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp_tran | (\fo y A \imp \fo y \fo x A) \imp (\fo y \fo x A \imp \fo x \fo y A) \imp \fo y A \imp \fo x \fo y A |
|
| 2 | hyp h | \nf x A |
|
| 3 | 2 | _nf_decomp | A \imp \fo x A |
| 4 | 3 | imp_intro_fo | \fo y A \imp \fo y \fo x A |
| 5 | 1, 4 | ax_mp | (\fo y \fo x A \imp \fo x \fo y A) \imp \fo y A \imp \fo x \fo y A |
| 6 | fo_swap | \fo y \fo x A \imp \fo x \fo y A |
|
| 7 | 5, 6 | ax_mp | \fo y A \imp \fo x \fo y A |
| 8 | 7 | _nf_comp | \nf x \fo y A |