\nf闭包\ex不同变元(不可引用)
theorem _nf_clos_ex_difvar {x y: set} (A: wff x y):
$ \nf x A $ >
$ \nf x \ex y A $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hyp h | \nf x A |
|
| 2 | 1 | _nf_clos_neg | \nf x \neg A |
| 3 | 2 | _nf_clos_fo_difvar | \nf x \fo y \neg A |
| 4 | 3 | _nf_clos_neg | \nf x \neg \fo y \neg A |
| 5 | 4 | conv ex | \nf x \ex y A |