\nf合成(不可引用)
theorem _nf_comp {x: set} (A: wff x): $ A \imp \fo x A $ > $ \nf x A $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp_replast | (\fo x (A \imp \fo x A) \imp \ex x A \imp \ex x \fo x A) \imp (\ex x \fo x A \imp \fo x A) \imp \fo x (A \imp \fo x A) \imp \ex x A \imp \fo x A |
|
| 2 | fo_imp_insto_ex | \fo x (A \imp \fo x A) \imp \ex x A \imp \ex x \fo x A |
|
| 3 | 1, 2 | ax_mp | (\ex x \fo x A \imp \fo x A) \imp \fo x (A \imp \fo x A) \imp \ex x A \imp \fo x A |
| 4 | exfo_elim_fo | \ex x \fo x A \imp \fo x A |
|
| 5 | 3, 4 | ax_mp | \fo x (A \imp \fo x A) \imp \ex x A \imp \fo x A |
| 6 | hyp h | A \imp \fo x A |
|
| 7 | 6 | intro_fo | \fo x (A \imp \fo x A) |
| 8 | 5, 7 | ax_mp | \ex x A \imp \fo x A |
| 9 | 8 | conv nf | \nf x A |