Theorem _nf_comp | index | src |

\nf合成(不可引用)

theorem _nf_comp {x: set} (A: wff x): $ A \imp \fo x A $ > $ \nf x A $;
StepHypRefExpression
1 imp_replast
(\fo x (A \imp \fo x A) \imp \ex x A \imp \ex x \fo x A) \imp (\ex x \fo x A \imp \fo x A) \imp \fo x (A \imp \fo x A) \imp \ex x A \imp \fo x A
2 fo_imp_insto_ex
\fo x (A \imp \fo x A) \imp \ex x A \imp \ex x \fo x A
3 1, 2 ax_mp
(\ex x \fo x A \imp \fo x A) \imp \fo x (A \imp \fo x A) \imp \ex x A \imp \fo x A
4 exfo_elim_fo
\ex x \fo x A \imp \fo x A
5 3, 4 ax_mp
\fo x (A \imp \fo x A) \imp \ex x A \imp \fo x A
6 hyp h
A \imp \fo x A
7 6 intro_fo
\fo x (A \imp \fo x A)
8 5, 7 ax_mp
\ex x A \imp \fo x A
9 8 conv nf
\nf x A

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3, ax_gen, ax_4, ax_10)