\nf拆解(不可引用)
theorem _nf_decomp {x: set} (A: wff x): $ \nf x A $ > $ A \imp \fo x A $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp_introrevr_imp | (A \imp \ex x A) \imp (\ex x A \imp \fo x A) \imp A \imp \fo x A |
|
| 2 | ex_intro | A \imp \ex x A |
|
| 3 | 1, 2 | ax_mp | (\ex x A \imp \fo x A) \imp A \imp \fo x A |
| 4 | 3 | conv nf | \nf x A \imp A \imp \fo x A |
| 5 | hyp h | \nf x A |
|
| 6 | 4, 5 | ax_mp | A \imp \fo x A |