Theorem _nf_decomp | index | src |

\nf拆解(不可引用)

theorem _nf_decomp {x: set} (A: wff x): $ \nf x A $ > $ A \imp \fo x A $;
StepHypRefExpression
1 imp_introrevr_imp
(A \imp \ex x A) \imp (\ex x A \imp \fo x A) \imp A \imp \fo x A
2 ex_intro
A \imp \ex x A
3 1, 2 ax_mp
(\ex x A \imp \fo x A) \imp A \imp \fo x A
4 3 conv nf
\nf x A \imp A \imp \fo x A
5 hyp h
\nf x A
6 4, 5 ax_mp
A \imp \fo x A

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3, ax_gen, ax_4, ax_5, ax_6, ax_7, ax_12)