Theorem and_comp | index | src |

\and合成

theorem and_comp (A B: wff): $ A \imp B \imp A \and B $;
StepHypRefExpression
1 imp_tran
(A \imp (A \imp \neg B) \imp \neg B) \imp (((A \imp \neg B) \imp \neg B) \imp B \imp \neg (A \imp \neg B)) \imp A \imp B \imp \neg (A \imp \neg B)
2 imp_imp_swapl
((A \imp \neg B) \imp A \imp \neg B) \imp A \imp (A \imp \neg B) \imp \neg B
3 imp_refl
(A \imp \neg B) \imp A \imp \neg B
4 2, 3 ax_mp
A \imp (A \imp \neg B) \imp \neg B
5 1, 4 ax_mp
(((A \imp \neg B) \imp \neg B) \imp B \imp \neg (A \imp \neg B)) \imp A \imp B \imp \neg (A \imp \neg B)
6 imp_neg_swap
((A \imp \neg B) \imp \neg B) \imp B \imp \neg (A \imp \neg B)
7 5, 6 ax_mp
A \imp B \imp \neg (A \imp \neg B)
8 7 conv and
A \imp B \imp A \and B

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3)