Theorem and_imp_distr_or | index | src |

\and\imp右分配\or

theorem and_imp_distr_or (A B C: wff):
  $ A \and B \imp C \iff (A \imp C) \or (B \imp C) $;
StepHypRefExpression
1 iff_comp
((A \and B \imp C) \imp (A \imp C) \or (B \imp C)) \imp ((A \imp C) \or (B \imp C) \imp A \and B \imp C) \imp (A \and B \imp C \iff (A \imp C) \or (B \imp C))
2 and_imp_insr_or
(A \and B \imp C) \imp (A \imp C) \or (B \imp C)
3 1, 2 ax_mp
((A \imp C) \or (B \imp C) \imp A \and B \imp C) \imp (A \and B \imp C \iff (A \imp C) \or (B \imp C))
4 imp_or_extr_and
(A \imp C) \or (B \imp C) \imp A \and B \imp C
5 3, 4 ax_mp
A \and B \imp C \iff (A \imp C) \or (B \imp C)

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3)