Theorem or_imp_distr_and | index | src |

\or\imp右分配\and

theorem or_imp_distr_and (A B C: wff):
  $ A \or B \imp C \iff (A \imp C) \and (B \imp C) $;
StepHypRefExpression
1 iff_comp
((A \or B \imp C) \imp (A \imp C) \and (B \imp C)) \imp ((A \imp C) \and (B \imp C) \imp A \or B \imp C) \imp (A \or B \imp C \iff (A \imp C) \and (B \imp C))
2 or_imp_insr_and
(A \or B \imp C) \imp (A \imp C) \and (B \imp C)
3 1, 2 ax_mp
((A \imp C) \and (B \imp C) \imp A \or B \imp C) \imp (A \or B \imp C \iff (A \imp C) \and (B \imp C))
4 imp_and_extr_or
(A \imp C) \and (B \imp C) \imp A \or B \imp C
5 3, 4 ax_mp
A \or B \imp C \iff (A \imp C) \and (B \imp C)

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3)