\ex指配(无关)
theorem ex_alloc_nf {x: set} (A: wff x): $ \nf x A $ > $ A \iff \ex x A $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iff_comp | (A \imp \ex x A) \imp (\ex x A \imp A) \imp (A \iff \ex x A) |
|
| 2 | ex_intro | A \imp \ex x A |
|
| 3 | 1, 2 | ax_mp | (\ex x A \imp A) \imp (A \iff \ex x A) |
| 4 | hyp n | \nf x A |
|
| 5 | 4 | ex_elim_nf | \ex x A \imp A |
| 6 | 3, 5 | ax_mp | A \iff \ex x A |