Theorem ex_alloc_nf | index | src |

\ex指配(无关)

theorem ex_alloc_nf {x: set} (A: wff x): $ \nf x A $ > $ A \iff \ex x A $;
StepHypRefExpression
1 iff_comp
(A \imp \ex x A) \imp (\ex x A \imp A) \imp (A \iff \ex x A)
2 ex_intro
A \imp \ex x A
3 1, 2 ax_mp
(\ex x A \imp A) \imp (A \iff \ex x A)
4 hyp n
\nf x A
5 4 ex_elim_nf
\ex x A \imp A
6 3, 5 ax_mp
A \iff \ex x A

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3, ax_gen, ax_4, ax_5, ax_6, ax_7, ax_12)