\imp右侧引入\fo(左侧无关)
theorem imp_intrors_fo_nfls {x: set} (A B: wff x):
$ \nf x A $ >
$ A \imp B $ >
$ A \imp \fo x B $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp_tran | (A \imp \fo x A) \imp (\fo x A \imp \fo x B) \imp A \imp \fo x B |
|
| 2 | hyp n | \nf x A |
|
| 3 | 2 | _nf_decomp | A \imp \fo x A |
| 4 | 1, 3 | ax_mp | (\fo x A \imp \fo x B) \imp A \imp \fo x B |
| 5 | hyp h | A \imp B |
|
| 6 | 5 | imp_intro_fo | \fo x A \imp \fo x B |
| 7 | 4, 6 | ax_mp | A \imp \fo x B |