Theorem imp_intrors_fo_nfls | index | src |

\imp右侧引入\fo(左侧无关)

theorem imp_intrors_fo_nfls {x: set} (A B: wff x):
  $ \nf x A $ >
  $ A \imp B $ >
  $ A \imp \fo x B $;
StepHypRefExpression
1 imp_tran
(A \imp \fo x A) \imp (\fo x A \imp \fo x B) \imp A \imp \fo x B
2 hyp n
\nf x A
3 2 _nf_decomp
A \imp \fo x A
4 1, 3 ax_mp
(\fo x A \imp \fo x B) \imp A \imp \fo x B
5 hyp h
A \imp B
6 5 imp_intro_fo
\fo x A \imp \fo x B
7 4, 6 ax_mp
A \imp \fo x B

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3, ax_gen, ax_4, ax_5, ax_6, ax_7, ax_12)