Theorem ex_and_distrs_nfls | index | src |

\ex\and分配右侧(左侧不出现)

theorem ex_and_distrs_nfls {x: set} (A B: wff x):
  $ \nf x A $ >
  $ \ex x (A \and B) \iff A \and \ex x B $;
StepHypRefExpression
1 iff_tran
(\ex x (A \and B) \iff \ex x B \and A) \imp (\ex x B \and A \iff A \and \ex x B) \imp (\ex x (A \and B) \iff A \and \ex x B)
2 iff_tran
(\ex x (A \and B) \iff \ex x (B \and A)) \imp (\ex x (B \and A) \iff \ex x B \and A) \imp (\ex x (A \and B) \iff \ex x B \and A)
3 and_comm
A \and B \iff B \and A
4 3 iff_intro_ex
\ex x (A \and B) \iff \ex x (B \and A)
5 2, 4 ax_mp
(\ex x (B \and A) \iff \ex x B \and A) \imp (\ex x (A \and B) \iff \ex x B \and A)
6 hyp n
\nf x A
7 6 ex_and_distls_nfrs
\ex x (B \and A) \iff \ex x B \and A
8 5, 7 ax_mp
\ex x (A \and B) \iff \ex x B \and A
9 1, 8 ax_mp
(\ex x B \and A \iff A \and \ex x B) \imp (\ex x (A \and B) \iff A \and \ex x B)
10 and_comm
\ex x B \and A \iff A \and \ex x B
11 9, 10 ax_mp
\ex x (A \and B) \iff A \and \ex x B

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3, ax_gen, ax_4, ax_5, ax_6, ax_7, ax_12)