Theorem fo_or_distls_nfrs | index | src |

\fo\or分配左侧(右侧不出现)

theorem fo_or_distls_nfrs {x: set} (A B: wff x):
  $ \nf x B $ >
  $ \fo x (A \or B) \iff \fo x A \or B $;
StepHypRefExpression
1 iff_tran
(\fo x (\neg A \imp B) \iff \ex x \neg A \imp B) \imp (\ex x \neg A \imp B \iff \neg \fo x A \imp B) \imp (\fo x (\neg A \imp B) \iff \neg \fo x A \imp B)
2 hyp n
\nf x B
3 2 fo_imp_distls_ex_nfrs
\fo x (\neg A \imp B) \iff \ex x \neg A \imp B
4 1, 3 ax_mp
(\ex x \neg A \imp B \iff \neg \fo x A \imp B) \imp (\fo x (\neg A \imp B) \iff \neg \fo x A \imp B)
5 iff_intror_imp
(\ex x \neg A \iff \neg \fo x A) \imp (\ex x \neg A \imp B \iff \neg \fo x A \imp B)
6 exneg_eqv_negfo
\ex x \neg A \iff \neg \fo x A
7 5, 6 ax_mp
\ex x \neg A \imp B \iff \neg \fo x A \imp B
8 4, 7 ax_mp
\fo x (\neg A \imp B) \iff \neg \fo x A \imp B
9 8 conv or
\fo x (A \or B) \iff \fo x A \or B

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3, ax_gen, ax_4, ax_5, ax_6, ax_7, ax_12)