Theorem ex_and_distls_nfrs | index | src |

\ex\and分配左侧(右侧不出现)

theorem ex_and_distls_nfrs {x: set} (A B: wff x):
  $ \nf x B $ >
  $ \ex x (A \and B) \iff \ex x A \and B $;
StepHypRefExpression
1 iff_comp
(\ex x (A \and B) \imp \ex x A \and B) \imp (\ex x A \and B \imp \ex x (A \and B)) \imp (\ex x (A \and B) \iff \ex x A \and B)
2 imp_tran
(\ex x (A \and B) \imp \ex x A \and \ex x B) \imp (\ex x A \and \ex x B \imp \ex x A \and B) \imp \ex x (A \and B) \imp \ex x A \and B
3 ex_and_ins
\ex x (A \and B) \imp \ex x A \and \ex x B
4 2, 3 ax_mp
(\ex x A \and \ex x B \imp \ex x A \and B) \imp \ex x (A \and B) \imp \ex x A \and B
5 imp_introl_and
(\ex x B \imp B) \imp \ex x A \and \ex x B \imp \ex x A \and B
6 hyp n
\nf x B
7 6 ex_elim_nf
\ex x B \imp B
8 5, 7 ax_mp
\ex x A \and \ex x B \imp \ex x A \and B
9 4, 8 ax_mp
\ex x (A \and B) \imp \ex x A \and B
10 1, 9 ax_mp
(\ex x A \and B \imp \ex x (A \and B)) \imp (\ex x (A \and B) \iff \ex x A \and B)
11 iff_imp_tran_imp
(\ex x A \and B \iff B \and \ex x A) \imp (B \and \ex x A \imp \ex x (A \and B)) \imp \ex x A \and B \imp \ex x (A \and B)
12 and_comm
\ex x A \and B \iff B \and \ex x A
13 11, 12 ax_mp
(B \and \ex x A \imp \ex x (A \and B)) \imp \ex x A \and B \imp \ex x (A \and B)
14 iff_eliml
(B \imp \ex x A \imp \ex x (A \and B) \iff B \and \ex x A \imp \ex x (A \and B)) \imp
  (B \imp \ex x A \imp \ex x (A \and B)) \imp
  B \and \ex x A \imp
  \ex x (A \and B)
15 imp_nested_gatherl_and
B \imp \ex x A \imp \ex x (A \and B) \iff B \and \ex x A \imp \ex x (A \and B)
16 14, 15 ax_mp
(B \imp \ex x A \imp \ex x (A \and B)) \imp B \and \ex x A \imp \ex x (A \and B)
17 imp_tran
(B \imp \fo x (A \imp A \and B)) \imp (\fo x (A \imp A \and B) \imp \ex x A \imp \ex x (A \and B)) \imp B \imp \ex x A \imp \ex x (A \and B)
18 imp_imp_swapl
(A \imp B \imp A \and B) \imp B \imp A \imp A \and B
19 and_comp
A \imp B \imp A \and B
20 18, 19 ax_mp
B \imp A \imp A \and B
21 6, 20 imp_intrors_fo_nfls
B \imp \fo x (A \imp A \and B)
22 17, 21 ax_mp
(\fo x (A \imp A \and B) \imp \ex x A \imp \ex x (A \and B)) \imp B \imp \ex x A \imp \ex x (A \and B)
23 fo_imp_insto_ex
\fo x (A \imp A \and B) \imp \ex x A \imp \ex x (A \and B)
24 22, 23 ax_mp
B \imp \ex x A \imp \ex x (A \and B)
25 16, 24 ax_mp
B \and \ex x A \imp \ex x (A \and B)
26 13, 25 ax_mp
\ex x A \and B \imp \ex x (A \and B)
27 10, 26 ax_mp
\ex x (A \and B) \iff \ex x A \and B

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3, ax_gen, ax_4, ax_5, ax_6, ax_7, ax_12)