Theorem fo_and_ex_extto_ex | index | src |

\fo\and\ex提取成\ex

theorem fo_and_ex_extto_ex {x: set} (A B: wff x):
  $ \fo x A \and \ex x B \imp \ex x (A \and B) $;
StepHypRefExpression
1 imp_nested_assemb_and
(\fo x A \imp \ex x B \imp \ex x (A \and B)) \imp \fo x A \and \ex x B \imp \ex x (A \and B)
2 imp_tran
(\fo x A \imp \fo x (B \imp A \and B)) \imp (\fo x (B \imp A \and B) \imp \ex x B \imp \ex x (A \and B)) \imp \fo x A \imp \ex x B \imp \ex x (A \and B)
3 and_comp
A \imp B \imp A \and B
4 3 imp_intro_fo
\fo x A \imp \fo x (B \imp A \and B)
5 2, 4 ax_mp
(\fo x (B \imp A \and B) \imp \ex x B \imp \ex x (A \and B)) \imp \fo x A \imp \ex x B \imp \ex x (A \and B)
6 fo_imp_insto_ex
\fo x (B \imp A \and B) \imp \ex x B \imp \ex x (A \and B)
7 5, 6 ax_mp
\fo x A \imp \ex x B \imp \ex x (A \and B)
8 1, 7 ax_mp
\fo x A \and \ex x B \imp \ex x (A \and B)

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3, ax_gen, ax_4)