Theorem fo_imp_distls_ex_nfrs | index | src |

\fo\imp分配左侧\ex(右侧无关)

theorem fo_imp_distls_ex_nfrs {x: set} (A B: wff x):
  $ \nf x B $ >
  $ \fo x (A \imp B) \iff \ex x A \imp B $;
StepHypRefExpression
1 iff_comp
(\fo x (A \imp B) \imp \ex x A \imp B) \imp ((\ex x A \imp B) \imp \fo x (A \imp B)) \imp (\fo x (A \imp B) \iff \ex x A \imp B)
2 imp_iff_tran_imp
(\fo x (A \imp B) \imp \ex x A \imp \ex x B) \imp (\ex x A \imp \ex x B \iff \ex x A \imp B) \imp \fo x (A \imp B) \imp \ex x A \imp B
3 fo_imp_insto_ex
\fo x (A \imp B) \imp \ex x A \imp \ex x B
4 2, 3 ax_mp
(\ex x A \imp \ex x B \iff \ex x A \imp B) \imp \fo x (A \imp B) \imp \ex x A \imp B
5 iff_introl_imp
(\ex x B \iff B) \imp (\ex x A \imp \ex x B \iff \ex x A \imp B)
6 iff_symm
(B \iff \ex x B) \imp (\ex x B \iff B)
7 hyp n
\nf x B
8 7 ex_alloc_nf
B \iff \ex x B
9 6, 8 ax_mp
\ex x B \iff B
10 5, 9 ax_mp
\ex x A \imp \ex x B \iff \ex x A \imp B
11 4, 10 ax_mp
\fo x (A \imp B) \imp \ex x A \imp B
12 1, 11 ax_mp
((\ex x A \imp B) \imp \fo x (A \imp B)) \imp (\fo x (A \imp B) \iff \ex x A \imp B)
13 imp_tran
((\ex x A \imp B) \imp \ex x A \imp \fo x B) \imp ((\ex x A \imp \fo x B) \imp \fo x (A \imp B)) \imp (\ex x A \imp B) \imp \fo x (A \imp B)
14 imp_introl_imp
(B \imp \fo x B) \imp (\ex x A \imp B) \imp \ex x A \imp \fo x B
15 7 fo_intro_nf
B \imp \fo x B
16 14, 15 ax_mp
(\ex x A \imp B) \imp \ex x A \imp \fo x B
17 13, 16 ax_mp
((\ex x A \imp \fo x B) \imp \fo x (A \imp B)) \imp (\ex x A \imp B) \imp \fo x (A \imp B)
18 ex_imp_fo_extto_fo
(\ex x A \imp \fo x B) \imp \fo x (A \imp B)
19 17, 18 ax_mp
(\ex x A \imp B) \imp \fo x (A \imp B)
20 12, 19 ax_mp
\fo x (A \imp B) \iff \ex x A \imp B

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3, ax_gen, ax_4, ax_5, ax_6, ax_7, ax_12)