\fo\imp分配右侧(左侧无关)
theorem fo_imp_distrs_nfls {x: set} (A B: wff x):
$ \nf x A $ >
$ \fo x (A \imp B) \iff A \imp \fo x B $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iff_comp | (\fo x (A \imp B) \imp A \imp \fo x B) \imp ((A \imp \fo x B) \imp \fo x (A \imp B)) \imp (\fo x (A \imp B) \iff A \imp \fo x B) |
|
| 2 | imp_tran | (\fo x (A \imp B) \imp \fo x A \imp \fo x B) \imp ((\fo x A \imp \fo x B) \imp A \imp \fo x B) \imp \fo x (A \imp B) \imp A \imp \fo x B |
|
| 3 | fo_imp_ins | \fo x (A \imp B) \imp \fo x A \imp \fo x B |
|
| 4 | 2, 3 | ax_mp | ((\fo x A \imp \fo x B) \imp A \imp \fo x B) \imp \fo x (A \imp B) \imp A \imp \fo x B |
| 5 | imp_introrevr_imp | (A \imp \fo x A) \imp (\fo x A \imp \fo x B) \imp A \imp \fo x B |
|
| 6 | hyp n | \nf x A |
|
| 7 | 6 | _nf_decomp | A \imp \fo x A |
| 8 | 5, 7 | ax_mp | (\fo x A \imp \fo x B) \imp A \imp \fo x B |
| 9 | 4, 8 | ax_mp | \fo x (A \imp B) \imp A \imp \fo x B |
| 10 | 1, 9 | ax_mp | ((A \imp \fo x B) \imp \fo x (A \imp B)) \imp (\fo x (A \imp B) \iff A \imp \fo x B) |
| 11 | imp_tran | ((A \imp \fo x B) \imp \ex x A \imp \fo x B) \imp ((\ex x A \imp \fo x B) \imp \fo x (A \imp B)) \imp (A \imp \fo x B) \imp \fo x (A \imp B) |
|
| 12 | imp_introrevr_imp | (\ex x A \imp A) \imp (A \imp \fo x B) \imp \ex x A \imp \fo x B |
|
| 13 | 6 | ex_elim_nf | \ex x A \imp A |
| 14 | 12, 13 | ax_mp | (A \imp \fo x B) \imp \ex x A \imp \fo x B |
| 15 | 11, 14 | ax_mp | ((\ex x A \imp \fo x B) \imp \fo x (A \imp B)) \imp (A \imp \fo x B) \imp \fo x (A \imp B) |
| 16 | ex_imp_fo_extto_fo | (\ex x A \imp \fo x B) \imp \fo x (A \imp B) |
|
| 17 | 15, 16 | ax_mp | (A \imp \fo x B) \imp \fo x (A \imp B) |
| 18 | 10, 17 | ax_mp | \fo x (A \imp B) \iff A \imp \fo x B |