Theorem fo_imp_distrs_nfls | index | src |

\fo\imp分配右侧(左侧无关)

theorem fo_imp_distrs_nfls {x: set} (A B: wff x):
  $ \nf x A $ >
  $ \fo x (A \imp B) \iff A \imp \fo x B $;
StepHypRefExpression
1 iff_comp
(\fo x (A \imp B) \imp A \imp \fo x B) \imp ((A \imp \fo x B) \imp \fo x (A \imp B)) \imp (\fo x (A \imp B) \iff A \imp \fo x B)
2 imp_tran
(\fo x (A \imp B) \imp \fo x A \imp \fo x B) \imp ((\fo x A \imp \fo x B) \imp A \imp \fo x B) \imp \fo x (A \imp B) \imp A \imp \fo x B
3 fo_imp_ins
\fo x (A \imp B) \imp \fo x A \imp \fo x B
4 2, 3 ax_mp
((\fo x A \imp \fo x B) \imp A \imp \fo x B) \imp \fo x (A \imp B) \imp A \imp \fo x B
5 imp_introrevr_imp
(A \imp \fo x A) \imp (\fo x A \imp \fo x B) \imp A \imp \fo x B
6 hyp n
\nf x A
7 6 _nf_decomp
A \imp \fo x A
8 5, 7 ax_mp
(\fo x A \imp \fo x B) \imp A \imp \fo x B
9 4, 8 ax_mp
\fo x (A \imp B) \imp A \imp \fo x B
10 1, 9 ax_mp
((A \imp \fo x B) \imp \fo x (A \imp B)) \imp (\fo x (A \imp B) \iff A \imp \fo x B)
11 imp_tran
((A \imp \fo x B) \imp \ex x A \imp \fo x B) \imp ((\ex x A \imp \fo x B) \imp \fo x (A \imp B)) \imp (A \imp \fo x B) \imp \fo x (A \imp B)
12 imp_introrevr_imp
(\ex x A \imp A) \imp (A \imp \fo x B) \imp \ex x A \imp \fo x B
13 6 ex_elim_nf
\ex x A \imp A
14 12, 13 ax_mp
(A \imp \fo x B) \imp \ex x A \imp \fo x B
15 11, 14 ax_mp
((\ex x A \imp \fo x B) \imp \fo x (A \imp B)) \imp (A \imp \fo x B) \imp \fo x (A \imp B)
16 ex_imp_fo_extto_fo
(\ex x A \imp \fo x B) \imp \fo x (A \imp B)
17 15, 16 ax_mp
(A \imp \fo x B) \imp \fo x (A \imp B)
18 10, 17 ax_mp
\fo x (A \imp B) \iff A \imp \fo x B

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3, ax_gen, ax_4, ax_5, ax_6, ax_7, ax_12)