Theorem imp_collectl_or | index | src |

\imp左聚集\or

theorem imp_collectl_or (A B C: wff):
  $ (A \imp C) \imp (B \imp C) \imp A \or B \imp C $;
StepHypRefExpression
1 and_imp_break_nested
((A \imp C) \and (B \imp C) \imp A \or B \imp C) \imp (A \imp C) \imp (B \imp C) \imp A \or B \imp C
2 imp_and_extr_or
(A \imp C) \and (B \imp C) \imp A \or B \imp C
3 1, 2 ax_mp
(A \imp C) \imp (B \imp C) \imp A \or B \imp C

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3)