\imp左聚集\or
theorem imp_collectl_or (A B C: wff): $ (A \imp C) \imp (B \imp C) \imp A \or B \imp C $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | and_imp_break_nested | ((A \imp C) \and (B \imp C) \imp A \or B \imp C) \imp (A \imp C) \imp (B \imp C) \imp A \or B \imp C |
|
| 2 | imp_and_extr_or | (A \imp C) \and (B \imp C) \imp A \or B \imp C |
|
| 3 | 1, 2 | ax_mp | (A \imp C) \imp (B \imp C) \imp A \or B \imp C |