Theorem or_imp_insr_and | index | src |

\or\imp右插入\and

theorem or_imp_insr_and (A B C: wff):
  $ (A \or B \imp C) \imp (A \imp C) \and (B \imp C) $;
StepHypRefExpression
1 and_comp
(A \imp C) \imp (B \imp C) \imp (A \imp C) \and (B \imp C)
2 1 _hyp_null_complete
(A \or B \imp C) \imp (A \imp C) \imp (B \imp C) \imp (A \imp C) \and (B \imp C)
3 imp_tran
(A \imp A \or B) \imp (A \or B \imp C) \imp A \imp C
4 3 _hyp_null_complete
(A \or B \imp C) \imp (A \imp A \or B) \imp (A \or B \imp C) \imp A \imp C
5 intror_or
A \imp A \or B
6 5 _hyp_null_complete
(A \or B \imp C) \imp A \imp A \or B
7 4, 6 _hyp_mp
(A \or B \imp C) \imp (A \or B \imp C) \imp A \imp C
8 _hyp_null_intro
(A \or B \imp C) \imp A \or B \imp C
9 7, 8 _hyp_mp
(A \or B \imp C) \imp A \imp C
10 2, 9 _hyp_mp
(A \or B \imp C) \imp (B \imp C) \imp (A \imp C) \and (B \imp C)
11 imp_tran
(B \imp A \or B) \imp (A \or B \imp C) \imp B \imp C
12 11 _hyp_null_complete
(A \or B \imp C) \imp (B \imp A \or B) \imp (A \or B \imp C) \imp B \imp C
13 introl_or
B \imp A \or B
14 13 _hyp_null_complete
(A \or B \imp C) \imp B \imp A \or B
15 12, 14 _hyp_mp
(A \or B \imp C) \imp (A \or B \imp C) \imp B \imp C
16 15, 8 _hyp_mp
(A \or B \imp C) \imp B \imp C
17 10, 16 _hyp_mp
(A \or B \imp C) \imp (A \imp C) \and (B \imp C)

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3)