Theorem imp_introls_ex_nfrs | index | src |

\imp左侧引入\ex(右侧无关)

theorem imp_introls_ex_nfrs {x: set} (A B: wff x):
  $ \nf x B $ >
  $ A \imp B $ >
  $ \ex x A \imp B $;
StepHypRefExpression
1 neg_imp_swap
(\neg B \imp \fo x \neg A) \imp \neg \fo x \neg A \imp B
2 1 conv ex
(\neg B \imp \fo x \neg A) \imp \ex x A \imp B
3 hyp n
\nf x B
4 3 _nf_clos_neg
\nf x \neg B
5 imp_introrev_neg
(A \imp B) \imp \neg B \imp \neg A
6 hyp h
A \imp B
7 5, 6 ax_mp
\neg B \imp \neg A
8 4, 7 imp_intrors_fo_nfls
\neg B \imp \fo x \neg A
9 2, 8 ax_mp
\ex x A \imp B

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3, ax_gen, ax_4, ax_5, ax_6, ax_7, ax_12)