\neg\imp推出同一
theorem neg_imp_tosame (A: wff): $ (\neg A \imp A) \imp A $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp_imp_insl | ((\neg A \imp A) \imp (\neg A \imp A) \imp A) \imp ((\neg A \imp A) \imp \neg A \imp A) \imp (\neg A \imp A) \imp A |
|
| 2 | imp_tran | ((\neg A \imp A) \imp \neg A \imp \neg (\neg A \imp A)) \imp ((\neg A \imp \neg (\neg A \imp A)) \imp (\neg A \imp A) \imp A) \imp (\neg A \imp A) \imp (\neg A \imp A) \imp A |
|
| 3 | imp_imp_insl | (\neg A \imp A \imp \neg (\neg A \imp A)) \imp (\neg A \imp A) \imp \neg A \imp \neg (\neg A \imp A) |
|
| 4 | neg_elimintror_imp | \neg A \imp A \imp \neg (\neg A \imp A) |
|
| 5 | 3, 4 | ax_mp | (\neg A \imp A) \imp \neg A \imp \neg (\neg A \imp A) |
| 6 | 2, 5 | ax_mp | ((\neg A \imp \neg (\neg A \imp A)) \imp (\neg A \imp A) \imp A) \imp (\neg A \imp A) \imp (\neg A \imp A) \imp A |
| 7 | neg_imp_elimrev | (\neg A \imp \neg (\neg A \imp A)) \imp (\neg A \imp A) \imp A |
|
| 8 | 6, 7 | ax_mp | (\neg A \imp A) \imp (\neg A \imp A) \imp A |
| 9 | 1, 8 | ax_mp | ((\neg A \imp A) \imp \neg A \imp A) \imp (\neg A \imp A) \imp A |
| 10 | imp_refl | (\neg A \imp A) \imp \neg A \imp A |
|
| 11 | 9, 10 | ax_mp | (\neg A \imp A) \imp A |