Theorem negimp_comp | index | src |

\neg\imp合成

theorem negimp_comp (A B: wff): $ A \imp \neg B \imp \neg (A \imp B) $;
StepHypRefExpression
1 imp_tran
(A \imp (A \imp B) \imp B) \imp (((A \imp B) \imp B) \imp \neg B \imp \neg (A \imp B)) \imp A \imp \neg B \imp \neg (A \imp B)
2 imp_imp_swapl
((A \imp B) \imp A \imp B) \imp A \imp (A \imp B) \imp B
3 imp_refl
(A \imp B) \imp A \imp B
4 2, 3 ax_mp
A \imp (A \imp B) \imp B
5 1, 4 ax_mp
(((A \imp B) \imp B) \imp \neg B \imp \neg (A \imp B)) \imp A \imp \neg B \imp \neg (A \imp B)
6 imp_introrev_neg
((A \imp B) \imp B) \imp \neg B \imp \neg (A \imp B)
7 5, 6 ax_mp
A \imp \neg B \imp \neg (A \imp B)

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3)