\or\imp左侧左拆分
theorem or_imp_splitlsl (A B C: wff): $ (A \or B \imp C) \imp A \imp C $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp_tran | ((A \or B \imp C) \imp (A \imp C) \and (B \imp C)) \imp ((A \imp C) \and (B \imp C) \imp A \imp C) \imp (A \or B \imp C) \imp A \imp C |
|
| 2 | or_imp_insr_and | (A \or B \imp C) \imp (A \imp C) \and (B \imp C) |
|
| 3 | 1, 2 | ax_mp | ((A \imp C) \and (B \imp C) \imp A \imp C) \imp (A \or B \imp C) \imp A \imp C |
| 4 | and_splitl | (A \imp C) \and (B \imp C) \imp A \imp C |
|
| 5 | 3, 4 | ax_mp | (A \or B \imp C) \imp A \imp C |