Theorem or_imp_splitlsr | index | src |

\or\imp左侧右拆分

theorem or_imp_splitlsr (A B C: wff): $ (A \or B \imp C) \imp B \imp C $;
StepHypRefExpression
1 imp_tran
((A \or B \imp C) \imp (A \imp C) \and (B \imp C)) \imp ((A \imp C) \and (B \imp C) \imp B \imp C) \imp (A \or B \imp C) \imp B \imp C
2 or_imp_insr_and
(A \or B \imp C) \imp (A \imp C) \and (B \imp C)
3 1, 2 ax_mp
((A \imp C) \and (B \imp C) \imp B \imp C) \imp (A \or B \imp C) \imp B \imp C
4 and_splitr
(A \imp C) \and (B \imp C) \imp B \imp C
5 3, 4 ax_mp
(A \or B \imp C) \imp B \imp C

Axiom use

Logic (ax_mp, ax_1, ax_2, ax_3)