公式
strict provable sort wff;
设置聚合公式的办法,与latex一致
def cbw (A: wff): wff = $ A $; notation cbw (A: wff): wff = ($\wff{$:max) A ($}$:0);
集合
pure sort set;
类
strict sort class;
设置花括号是聚合类所用,与latex一致
def cbc (x: class): class = $ x $; notation cbc (x: class): class = (${$:max) x ($}$:0);
最多一个量词∃*x
def mo {x: set} (P: wff x): wff = $ \ex y \fo x (P \imp x = y) $; prefix mo: $\mo$ prec 50;
存在唯一量词∃!x
def eu {x: set} (P: wff x): wff = $ \ex y \fo x (P \iff x = y) $; prefix eu: $\eu$ prec 50;
限域任意量词(∀x∈y)
def foin {x: set} (y: class) (P: wff x): wff = $ \fo x (x \in y \imp P) $; prefix foin: $\foin$ prec 50;
限域存在量词(∃x∈y)
def exin {x: set} (y: class) (P: wff x): wff = $ \ex x (x \in y \and P) $; prefix exin: $\exin$ prec 50;
限域不存在量词(∄x∈y)
def nexin {x: set} (y: class) (P: wff x): wff = $ \nex x (x \in y \and P) $; prefix nexin: $\nexin$ prec 50;
限域做多一个量词(∃*x∈y)
def moin {x: set} (y: class) (P: wff x): wff = $ \mo x (x \in y \and P) $; prefix moin: $\moin$ prec 50;
限域存在唯一量词(∃!x∈y)
def euin {x: set} (y: class) (P: wff x): wff = $ \eu x (x \in y \and P) $; prefix euin: $\euin$ prec 50;
替换[y/x]
def sb (y: set) {x: set} (P: wff x): wff = $ \fo t (t = y \imp \fo x (x = t \imp P)) $; prefix sb: $\sb$ prec 50;
替换公理
axiom ax_rep {w x y z: set} (P: wff w x y z): $ \fo x \ex y \fo z (\fo y P \imp z = y) \imp \ex y \fo z (z \in y \iff \ex w (w \in x \and \fo y P)) $;
幂集公理
axiom ax_pow {w y z: set} (x: set): $ \ex y \fo z (\fo w (w \in z \imp w \in x) \imp z \in y) $;
并集公理
axiom ax_un {w y z: set} (x: set): $ \ex y \fo z (\ex w (z \in w \and w \in x) \imp z \in y) $;
正则公理
axiom ax_reg {y z: set} (x: set): $ \ex y y \in x \imp \ex y (y \in x \and \fo z (z \in y \imp \neg z \in x)) $;
无穷公理
axiom ax_inf {w y z: set} (x: set): $ \ex y (x \in y \and \fo z (z \in y \imp \ex w (z \in w \and w \in y))) $;
选择公理
axiom ax_ac {t u v w y z: set} (x: set): $ \ex y \fo z \fo w (z \in w \and w \in x \imp \ex v \fo u (\ex t (u \in w \and w \in t \and (u \in t \and t \in y)) \iff u = v)) $;
类等式公理
axiom df_cleq (A B: class) {u v x: set} (y z t: set): $ y = z \iff \fo u (u \in y \iff u \in z) $ > $ t = t \iff \fo v (v \in t \iff v \in t) $ > $ A = B \iff \fo x (x \in A \iff x \in B) $;
类属于公理
axiom df_clel (A B: class) {u v x: set} (y z t: set): $ y \in z \iff \ex u (u = y \and u \in z) $ > $ t \in t \iff \ex v (v = t \and v \in t) $ > $ A \in B \iff \ex x (x = A \and x \in B) $;
左引入\imp
theorem introl_imp (A B: wff): $ A \imp B \imp A $;
\imp左插入
theorem imp_imp_insl (A B C: wff): $ (A \imp B \imp C) \imp (A \imp B) \imp A \imp C $;
\imp左引入\imp
theorem imp_introl_imp (A B C: wff): $ (B \imp C) \imp (A \imp B) \imp A \imp C $;
\imp\imp左交换
theorem imp_imp_swapl (A B C: wff): $ (A \imp B \imp C) \imp B \imp A \imp C $;
MP公式调换形式
theorem mp_hswap_thm (A B: wff): $ A \imp (A \imp B) \imp B $;
带前件的MP公式
theorem mp_with_ant_thm (A B C: wff): $ (A \imp B \imp C) \imp (A \imp B) \imp A \imp C $;
\imp左引入右侧
theorem imp_introrsl_imp (A B C: wff): $ (A \imp B) \imp A \imp C \imp B $;
\imp右侧左消除
theorem imp_imp_elimrsl (A B C: wff): $ (A \imp B \imp C) \imp B \imp A \imp C $;
\imp对\imp右逆引入
theorem imp_introrevr_imp (A B C: wff): $ (A \imp B) \imp (B \imp C) \imp A \imp C $;
\imp继位
theorem imp_replast (A B C D: wff): $ (A \imp B \imp C) \imp (C \imp D) \imp A \imp B \imp D $;
\imp替换第二位
theorem imp_repsecond (A B C D: wff): $ (A \imp B \imp C) \imp (D \imp B) \imp A \imp D \imp C $;
\imp左提取
theorem imp_imp_extl (A B C: wff): $ ((A \imp B) \imp A \imp C) \imp A \imp B \imp C $;
\imp右插入
theorem imp_imp_insr (A B C: wff): $ ((A \imp B) \imp C) \imp (A \imp C) \imp B \imp C $;
\imp左同化
theorem imp_imp_assiml (A B: wff): $ (A \imp A \imp B) \imp A \imp B $;
\imp正结合
theorem imp_assocfwd (A B C: wff): $ ((A \imp B) \imp C) \imp A \imp B \imp C $;
\neg\imp逆消除
theorem neg_imp_elimrev (A B: wff): $ (\neg A \imp \neg B) \imp B \imp A $;
\neg消除右引入\imp
theorem neg_elimintror_imp (A B: wff): $ \neg A \imp A \imp B $;
右引入\neg\imp
theorem intror_neg_imp (A B: wff): $ A \imp \neg A \imp B $;
\neg\neg消除
theorem negneg_elim (A: wff): $ \neg \neg A \imp A $;
\neg\neg引出
theorem negneg_intro (A: wff): $ A \imp \neg \neg A $;
\neg\imp交换
theorem neg_imp_swap (A B: wff): $ (\neg A \imp B) \imp \neg B \imp A $;
\imp\neg交换
theorem imp_neg_swap (A B: wff): $ (A \imp \neg B) \imp B \imp \neg A $;
\imp逆引入\neg
theorem imp_introrev_neg (A B: wff): $ (A \imp B) \imp \neg B \imp \neg A $;
\neg\imp左拆分
theorem negimp_splitl (A B: wff): $ \neg (A \imp B) \imp A $;
\neg\imp右拆分\neg
theorem negimp_splitr_neg (A B: wff): $ \neg (A \imp B) \imp \neg B $;
\neg\imp合成
theorem negimp_comp (A B: wff): $ A \imp \neg B \imp \neg (A \imp B) $;
\neg\imp推出同一
theorem neg_imp_tosame (A: wff): $ (\neg A \imp A) \imp A $;
\imp\neg推出同一\neg
theorem imp_neg_tosame_neg (A: wff): $ (A \imp \neg A) \imp \neg A $;
\imp左合并\neg\imp
theorem imp_mergel_neg_imp (A B C: wff): $ (A \imp C) \imp (B \imp C) \imp (\neg A \imp B) \imp C $;
\neg\imp与\imp左合并\imp
theorem neg_imp_with_imp_mergel_imp (A B C: wff): $ (\neg A \imp C) \imp (B \imp C) \imp (A \imp B) \imp C $;
\imp左矛盾消去
theorem imp2_elimcontradl (A B: wff): $ (A \imp B) \imp (\neg A \imp B) \imp B $;
矛盾律
theorem contradiction (A: wff): $ \neg (A \and \neg A) $;
\and左拆分
theorem and_splitl (A B: wff): $ A \and B \imp A $;
\and右拆分
theorem and_splitr (A B: wff): $ A \and B \imp B $;
\imp左左\and引入
theorem imp_introlsl_and (A B C: wff): $ (B \imp C) \imp A \and B \imp C $;
\imp左右\and引入
theorem imp_introlsr_and (A B C: wff): $ (A \imp C) \imp A \and B \imp C $;
\imp左引入\and
theorem imp_introl_and (A B C: wff): $ (A \imp B) \imp C \and A \imp C \and B $;
\imp右引入\and
theorem imp_intror_and (A B C: wff): $ (A \imp B) \imp A \and C \imp B \and C $;
嵌套前件聚合\and
theorem imp_nested_assemb_and (A B C: wff): $ (A \imp B \imp C) \imp A \and B \imp C $;
前件\and拆解嵌套\imp
theorem and_imp_break_nested (A B C: wff): $ (A \and B \imp C) \imp A \imp B \imp C $;
\imp对\and左提取
theorem imp_and_extl (A B C: wff): $ (A \imp B) \and (A \imp C) \imp A \imp B \and C $;
\imp右聚集\and
theorem imp_collectr_and (A B C: wff): $ (A \imp B) \imp (A \imp C) \imp A \imp B \and C $;
\imp\and右提取
theorem imp_and_extr (A B C: wff): $ (A \imp C) \and (B \imp C) \imp A \and B \imp C $;
\imp左聚集\and
theorem imp_collectl_and (A B C: wff): $ (A \imp C) \imp (B \imp C) \imp A \and B \imp C $;
\imp\and左插入
theorem imp_and_insl (A B C: wff): $ (A \imp B \and C) \imp (A \imp B) \and (A \imp C) $;
\imp\and右侧右拆分
theorem imp_and_splitrsl (A B C: wff): $ (A \imp B \and C) \imp A \imp B $;
\imp\and右侧左拆分
theorem imp_and_splitrsr (A B C: wff): $ (A \imp B \and C) \imp A \imp C $;
假设为空时引入假设(不可直接引用)
theorem _hyp_null_intro (G: wff): $ G \imp G $;
假设不为空时引入假设(不可直接引用)
theorem _hyp_intro (A G: wff): $ G \and A \imp A $;
假设为空时补全假设(不可直接引用)
theorem _hyp_null_complete (A G: wff): $ A $ > $ G \imp A $;
假设不为空时补全假设(不可直接引用)
theorem _hyp_complete (A G_1 G_2: wff): $ G_1 \imp A $ > $ G_1 \and G_2 \imp A $;
假设为空时对移出的假设进行收集(不可直接引用)
theorem _hyp_null_collect (A G_1 G_2: wff): $ G_1 \imp G_2 \imp A $ > $ G_1 \and G_2 \imp A $;
假设不为空时对移出的假设进行收集(不可直接引用)
theorem _hyp_collect (A G_1 G_2 G_3: wff): $ G_1 \imp G_2 \imp G_3 \imp A $ > $ G_1 \imp G_2 \and G_3 \imp A $;
排中律
theorem excluded_middle (A: wff): $ A \or \neg A $;
\or对\imp左引入
theorem imp_introl_or (A B C: wff): $ (A \imp B) \imp C \or A \imp C \or B $;
\or对\imp右引入
theorem imp_intror_or (A B C: wff): $ (A \imp B) \imp A \or C \imp B \or C $;
\imp\or左插入
theorem imp_or_insl (A B C: wff): $ (A \imp B \or C) \imp (A \imp B) \or (A \imp C) $;
\imp\or左提取
theorem imp_or_extl (A B C: wff): $ (A \imp B) \or (A \imp C) \imp A \imp B \or C $;
\imp\or右插入
theorem or_imp_insr (A B C: wff): $ (A \or B \imp C) \imp (A \imp C) \or (B \imp C) $;
\imp\and左插入\or
theorem imp_and_insl_or (A B C: wff): $ (A \imp B \and C) \imp (A \imp B) \or (A \imp C) $;
\imp\and左提取\or
theorem imp_and_extl_or (A B C: wff): $ (A \imp B) \and (A \imp C) \imp A \imp B \or C $;
\imp\and右插入\or
theorem and_imp_insr_or (A B C: wff): $ (A \and B \imp C) \imp (A \imp C) \or (B \imp C) $;
\imp\and右提取\or
theorem imp_and_extr_or (A B C: wff): $ (A \imp C) \and (B \imp C) \imp A \or B \imp C $;
\imp左聚集\or
theorem imp_collectl_or (A B C: wff): $ (A \imp C) \imp (B \imp C) \imp A \or B \imp C $;
\or\imp右插入\and
theorem or_imp_insr_and (A B C: wff): $ (A \or B \imp C) \imp (A \imp C) \and (B \imp C) $;
\or\imp左侧左拆分
theorem or_imp_splitlsl (A B C: wff): $ (A \or B \imp C) \imp A \imp C $;
\or\imp左侧右拆分
theorem or_imp_splitlsr (A B C: wff): $ (A \or B \imp C) \imp B \imp C $;
\imp\or右提取\and
theorem imp_or_extr_and (A B C: wff): $ (A \imp C) \or (B \imp C) \imp A \and B \imp C $;
\iff正分解
theorem iff_decomp (A B: wff): $ (A \iff B) \imp A \imp B $;
\iff逆分解
theorem iff_decompbwd (A B: wff): $ (A \iff B) \imp B \imp A $;
\imp对\imp左置换
theorem imp_imp_perml (A B C: wff): $ A \imp B \imp C \iff B \imp A \imp C $;
\imp对\imp左折叠
theorem imp_imp_foldl (A B: wff): $ A \imp A \imp B \iff A \imp B $;
\imp逆指配\neg
theorem imp_allocrev_neg (A B: wff): $ A \imp B \iff \neg B \imp \neg A $;
\neg\imp置换
theorem neg_imp_perm (A B: wff): $ \neg A \imp B \iff \neg B \imp A $;
\imp\neg置换
theorem imp_neg_perm (A B: wff): $ A \imp \neg B \iff B \imp \neg A $;
\neg\neg等价
theorem negneg_alloc (A: wff): $ A \iff \neg \neg A $;
嵌套前件收集\and
theorem imp_nested_gatherl_and (A B C: wff): $ A \imp B \imp C \iff A \and B \imp C $;
\imp\imp左分配
theorem imp_imp_distl (A B C: wff): $ A \imp B \imp C \iff (A \imp B) \imp A \imp C $;
\imp\and左分配
theorem imp_and_distl (A B C: wff): $ A \imp B \and C \iff (A \imp B) \and (A \imp C) $;
\imp\or左分配
theorem imp_or_distl (A B C: wff): $ A \imp B \or C \iff (A \imp B) \or (A \imp C) $;
\and\imp右分配\or
theorem and_imp_distr_or (A B C: wff): $ A \and B \imp C \iff (A \imp C) \or (B \imp C) $;
\or\imp右分配\and
theorem or_imp_distr_and (A B C: wff): $ A \or B \imp C \iff (A \imp C) \and (B \imp C) $;
\imp\iff左插入
theorem imp_iff_insl (A B C: wff): $ (A \imp (B \iff C)) \imp (A \imp B \iff A \imp C) $;
\imp\iff左提取
theorem imp_iff_extl (A B C: wff): $ (A \imp B \iff A \imp C) \imp A \imp (B \iff C) $;
\imp\iff左分配
theorem imp_iff_distl (A B C: wff): $ A \imp (B \iff C) \iff A \imp B \iff A \imp C $;
\iff左引入\imp
theorem iff_introl_imp (A B C: wff): $ (B \iff C) \imp (A \imp B \iff A \imp C) $;
\iff右引入\imp
theorem iff_intror_imp (A B C: wff): $ (A \iff B) \imp (A \imp C \iff B \imp C) $;
\iff\imp左插入
theorem iff_imp_insl (A B C: wff): $ (A \iff B \imp C) \imp (A \iff B) \imp (A \iff C) $;
\imp\iff右插入
theorem imp_iff_insr (A B C: wff): $ (A \imp B \iff C) \imp (A \iff C) \imp (B \iff C) $;
\iff\imp传递至\imp
theorem iff_imp_tran_imp (A B C: wff): $ (A \iff B) \imp (B \imp C) \imp A \imp C $;
\imp\iff传递至\imp
theorem imp_iff_tran_imp (A B C: wff): $ (A \imp B) \imp (B \iff C) \imp A \imp C $;
\iff引入\neg
theorem iff_intro_neg (A B: wff): $ (A \iff B) \imp (\neg A \iff \neg B) $;
\neg\iff消除
theorem neg_iff_elim (A B: wff): $ (\neg A \iff \neg B) \imp (A \iff B) $;
\iff指配\neg
theorem iff_alloc_neg (A B: wff): $ (A \iff B) \iff \neg A \iff \neg B $;
\iff同时引入\imp
theorem iff_simintro_imp (A B C D: wff): $ (A \iff B) \imp (C \iff D) \imp (A \imp C \iff B \imp D) $;
\iff同时引入\or
theorem iff_simintro_or (A B C D: wff): $ (A \iff B) \imp (C \iff D) \imp (A \or C \iff B \or D) $;
\iff左引入\or
theorem iff_introl_or (A B C: wff): $ (B \iff C) \imp (A \or B \iff A \or C) $;
\iff右引入\or
theorem iff_intror_or (A B C: wff): $ (A \iff B) \imp (A \or C \iff B \or C) $;
\iff同时引入\and
theorem iff_simintro_and (A B C D: wff): $ (A \iff B) \imp (C \iff D) \imp (A \and C \iff B \and D) $;
\iff左引入\and
theorem iff_introl_and (A B C: wff): $ (B \iff C) \imp (A \and B \iff A \and C) $;
\iff右引入\and
theorem iff_intror_and (A B C: wff): $ (A \iff B) \imp (A \and C \iff B \and C) $;
\iff同时引入\iff
theorem iff_simintro_iff (A B C D: wff): $ (A \iff B) \imp (C \iff D) \imp ((A \iff C) \iff B \iff D) $;
\iff左引入\iff
theorem iff_introl_iff (A B C: wff): $ (B \iff C) \imp ((A \iff B) \iff A \iff C) $;
\iff右引入\iff
theorem iff_intror_iff (A B C: wff): $ (A \iff B) \imp ((A \iff C) \iff B \iff C) $;
\neg\iff置换
theorem neg_iff_perm (A B: wff): $ (\neg A \iff B) \iff \neg B \iff A $;
\iff\neg置换
theorem iff_neg_perm (A B: wff): $ (A \iff \neg B) \iff B \iff \neg A $;
\imp布尔等价式
theorem imp_boole_def (A B: wff): $ A \imp B \iff \neg A \or B $;
\neg\imp布尔等价式
theorem negimp_boole_def (A B: wff): $ \neg (A \imp B) \iff A \and \neg B $;
\iff布尔等价式
theorem iff_boole_def (A B: wff): $ (A \iff B) \iff \neg A \or B \and (\neg B \or A) $;
\neg\iff布尔等价式
theorem negiff_boole_def (A B: wff): $ \neg (A \iff B) \iff A \and \neg B \or (B \and \neg A) $;
\and\or左分配
theorem and_or_distl (A B C: wff): $ A \and (B \or C) \iff A \and B \or (A \and C) $;
\or\and右分配
theorem or_and_distr (A B C: wff): $ A \or B \and C \iff A \and C \or (B \and C) $;
\or\and左分配
theorem or_and_distl (A B C: wff): $ A \or (B \and C) \iff A \or B \and (A \or C) $;
\and\or右分配
theorem and_or_distr (A B C: wff): $ A \and B \or C \iff A \or C \and (B \or C) $;
\and\or左吸收
theorem and_or_absorbl (A B: wff): $ A \and (A \or B) \iff A $;
\or\and左吸收
theorem or_and_absorbl (A B: wff): $ A \or (A \and B) \iff A $;
\neg\or分配\and
theorem neg_or_dist_and (A B: wff): $ \neg (A \or B) \iff \neg A \and \neg B $;
\neg\and分配\or
theorem neg_and_dist_or (A B: wff): $ \neg (A \and B) \iff \neg A \or \neg B $;
\true证明
theorem true_proof: $ \true $;
\neg\false证明
theorem negfalse_proof: $ \neg \false $;
\true\imp等价自身
theorem trueimp_eqv_self (A: wff): $ \true \imp A \iff A $;
\imp\false等价\neg自身
theorem impfalse_eqv_negself (A: wff): $ A \imp \false \iff \neg A $;
定理与\true等价
theorem prov_iff_true (A: wff): $ A \imp (A \iff \true) $;
否定的定理与\false等价
theorem provneg_iff_false (A: wff): $ \neg A \imp (A \iff \false) $;
假值合成
theorem false_comp (A: wff): $ A \imp \neg A \imp \false $;
赋值为真
theorem assgin_true (A: wff): $ A \iff A \iff \true $;
赋值为假
theorem assign_false (A: wff): $ \neg A \iff A \iff \false $;
反证法
theorem proof_by_contrad (A: wff): $ (\neg A \imp \false) \imp A $;
归谬法
theorem proof_by_absurd (A: wff): $ (A \imp \false) \imp \neg A $;
排中律tf形式
theorem excluded_middle_tf (A: wff): $ (A \iff \true) \or (A \iff \false) $;
矛盾律tf形式
theorem contradiction_tf (A: wff): $ \neg ((A \iff \true) \and (A \iff \false)) $;
\neg真值表:\neg \true \iff \false
theorem neg_true_iff_false: $ \neg \true \iff \false $;
\neg真值表:\neg \false \iff \true
theorem neg_false_iff_true: $ \neg \false \iff \true $;
\imp真值表:\true \imp \true \iff \true
theorem true_imp_true_iff_true: $ \true \imp \true \iff \true $;
\imp真值表:\true \imp \false \iff \false
theorem true_imp_false_iff_false: $ \true \imp \false \iff \false $;
\imp真值表:\false \imp \true \iff \true
theorem false_imp_true_iff_true: $ \false \imp \true \iff \true $;
\imp真值表:\false \imp \false \iff \true
theorem false_imp_false_iff_true: $ \false \imp \false \iff \true $;
\imp真值表:wff \imp \true \iff \true
theorem wff_imp_true_iff_true (A: wff): $ A \imp \true \iff \true $;
\imp真值表:wff \imp \false \iff \neg wff
theorem wff_imp_false_iff_neg_wff (A: wff): $ A \imp \false \iff \neg A $;
\imp真值表:\true \imp wff \iff wff
theorem true_imp_wff_iff_wff (A: wff): $ \true \imp A \iff A $;
\imp真值表:\false \imp wff \iff \true
theorem false_imp_wff_iff_true (A: wff): $ \false \imp A \iff \true $;
\and真值表:\true \and \true \iff \true
theorem true_and_true_iff_true: $ \true \and \true \iff \true $;
\and真值表:\true \and \false \iff \false
theorem true_and_false_iff_false: $ \true \and \false \iff \false $;
\and真值表:\false \and \true \iff \false
theorem false_and_true_iff_false: $ \false \and \true \iff \false $;
\and真值表:\false \and \false \iff \false
theorem false_and_false_iff_false: $ \false \and \false \iff \false $;
\and真值表:A \and \true \iff A
theorem wff_and_true_iff_self (A: wff): $ A \and \true \iff A $;
\and真值表:wff \and \false \iff \false
theorem wff_and_false_iff_false (A: wff): $ A \and \false \iff \false $;
\and真值表:\true \and A \iff A
theorem true_and_wff_iff_self (A: wff): $ \true \and A \iff A $;
\and真值表:\false \and A \iff \false
theorem false_and_wff_iff_false (A: wff): $ \false \and A \iff \false $;
\or真值表:\true \or \true \iff \true
theorem true_or_true_iff_true: $ \true \or \true \iff \true $;
\or真值表:\true \or \false \iff \true
theorem true_or_false_iff_true: $ \true \or \false \iff \true $;
\or真值表:\false \or \true \iff \true
theorem false_or_true_iff_true: $ \false \or \true \iff \true $;
\or真值表:\false \or \false \iff \false
theorem false_or_false_iff_false: $ \false \or \false \iff \false $;
\or真值表:wff \or \true \iff \true
theorem wff_or_true_iff_true (A: wff): $ A \or \true \iff \true $;
\or真值表:wff \or \false \iff wff
theorem wff_or_false_iff_wff (A: wff): $ A \or \false \iff A $;
\or真值表:\true \or wff \iff \true
theorem true_or_wff_iff_true (A: wff): $ \true \or A \iff \true $;
\or真值表:\false \or wff \iff wff
theorem false_or_wff_iff_wff (A: wff): $ \false \or A \iff A $;
\iff真值表:(\true \iff \true) \iff \true
theorem true_iff_true_iff_true: $ (\true \iff \true) \iff \true $;
\iff真值表:(\true \iff \false) \iff \false
theorem true_iff_false_iff_false: $ (\true \iff \false) \iff \false $;
\iff真值表:(\false \iff \true) \iff \false
theorem false_iff_true_iff_false: $ (\false \iff \true) \iff \false $;
\iff真值表:(\false \iff \false) \iff \true
theorem false_iff_false_iff_true: $ (\false \iff \false) \iff \true $;
\iff真值表:(A \iff \true) \iff A
theorem wff_iff_true_iff_self (A: wff): $ (A \iff \true) \iff A $;
\iff真值表:(A \iff \false) \iff \neg A
theorem wff_iff_false_iff_negself (A: wff): $ (A \iff \false) \iff \neg A $;
\iff真值表:(\true \iff A) \iff A
theorem true_iff_wff_iff_wff (A: wff): $ (\true \iff A) \iff A $;
\iff真值表:(\false \iff A) \iff \neg
theorem false_iff_wff_iff_negself (A: wff): $ (\false \iff A) \iff \neg A $;
\fo对\imp插入
theorem fo_imp_ins {x: set} (A B: wff x): $ \fo x (A \imp B) \imp \fo x A \imp \fo x B $;
\fo对\imp引入
theorem imp_intro_fo {x: set} (A B: wff x): $ A \imp B $ > $ \fo x A \imp \fo x B $;
\fo对\iff插入
theorem fo_iff_ins {x: set} (A B: wff x): $ \fo x (A \iff B) \imp (\fo x A \iff \fo x B) $;
\fo对\iff引入
theorem iff_intro_fo {x: set} (A B: wff x): $ A \iff B $ > $ \fo x A \iff \fo x B $;
\fo\and分配
theorem fo_and_dist {x: set} (A B: wff x): $ \fo x (A \and B) \iff \fo x A \and \fo x B $;
\ex等价\neg\fo\neg
theorem ex_eqv_negfoneg {x: set} (A: wff x): $ \ex x A \iff \neg \fo x \neg A $;
\fo等价\neg\ex\neg
theorem fo_eqv_negexneg {x: set} (A: wff x): $ \fo x A \iff \neg \ex x \neg A $;
\fo\neg等价\neg\ex
theorem foneg_eqv_negex {x: set} (A: wff x): $ \fo x \neg A \iff \neg \ex x A $;
\ex\neg等价\neg\fo
theorem exneg_eqv_negfo {x: set} (A: wff x): $ \ex x \neg A \iff \neg \fo x A $;
\fo\imp插入成\ex
theorem fo_imp_insto_ex {x: set} (A B: wff x): $ \fo x (A \imp B) \imp \ex x A \imp \ex x B $;
\imp引入\ex
theorem imp_intro_ex {x: set} (A B: wff x): $ A \imp B $ > $ \ex x A \imp \ex x B $;
\fo\iff插入\ex
theorem fo_iff_insto_ex {x: set} (A B: wff x): $ \fo x (A \iff B) \imp (\ex x A \iff \ex x B) $;
\iff引入\ex
theorem iff_intro_ex {x: set} (A B: wff x): $ A \iff B $ > $ \ex x A \iff \ex x B $;
\ex\imp分配成\fo\ex
theorem ex_imp_distto_fo_ex {x: set} (A B: wff x): $ \ex x (A \imp B) \iff \fo x A \imp \ex x B $;
\ex\and插入
theorem ex_and_ins {x: set} (A B: wff x): $ \ex x (A \and B) \imp \ex x A \and \ex x B $;
\ex\imp\fo提取成\fo
theorem ex_imp_fo_extto_fo {x: set} (A B: wff x): $ (\ex x A \imp \fo x B) \imp \fo x (A \imp B) $;
\fo\and\ex提取成\ex
theorem fo_and_ex_extto_ex {x: set} (A B: wff x): $ \fo x A \and \ex x B \imp \ex x (A \and B) $;
\ex\and\fo提取成\ex
theorem ex_and_fo_extto_ex {x: set} (A B: wff x): $ \ex x A \and \fo x B \imp \ex x (A \and B) $;
\fo\or插入成\ex
theorem fo_or_insto_fo_ex {x: set} (A B: wff x): $ \fo x (A \or B) \imp \fo x A \or \ex x B $;
\ex\or分配
theorem ex_or_dist {x: set} (A B: wff x): $ \ex x (A \or B) \iff \ex x A \or \ex x B $;
\fo\or插入成\ex\fo
theorem fo_or_insto_ex_fo {x: set} (A B: wff x): $ \fo x (A \or B) \imp \ex x A \or \fo x B $;
\fo无关引入
theorem fo_intro_abs (A: wff) {x: set}: $ A \imp \fo x A $;
替换公理
theorem substitution {x: set} (y: set) (P: wff x): $ x = y \imp P \imp \fo x (x = y \imp P) $;
\fo\imp插入右侧(左侧不出现)
theorem fo_imp_insrs_absls (A: wff) {x: set} (B: wff x): $ \fo x (A \imp B) \imp A \imp \fo x B $;
\ex消除(不出现)
theorem ex_elim_abs (A: wff) {x: set}: $ \ex x A \imp A $;
\fo\imp引入左侧成\ex(右侧不出现)
theorem fo_imp_inslsto_ex_absrs (B: wff) {x: set} (A: wff x): $ \fo x (A \imp B) \imp \ex x A \imp B $;
\fo指配(不出现)
theorem fo_alloc_abs (A: wff) {x: set}: $ A \iff \fo x A $;
\ex指配(不出现)
theorem ex_alloc_abs (A: wff) {x: set}: $ A \iff \ex x A $;
\fo指配(可证)
theorem fo_alloc_prov {x: set} (A: wff x): $ A $ > $ A \iff \fo x A $;
\imp左侧引入\fo
theorem imp_introls_fo {x: set} (A B: wff x): $ (A \imp B) \imp \fo x A \imp B $;
\imp左侧消除\ex
theorem imp_elimls_ex {x: set} (A B: wff x): $ (\ex x A \imp B) \imp A \imp B $;
\fo对\neg\fo引入
theorem negfo_intro_fo {x: set} (A: wff x): $ \neg \fo x A \imp \fo x \neg \fo x A $;
\ex引入\fo
theorem ex_intro_fo {x: set} (A: wff x): $ \ex x A \imp \fo x \ex x A $;
\ex\fo消除为\fo
theorem exfo_elim_fo {x: set} (A: wff x): $ \ex x \fo x A \imp \fo x A $;
\nf拆解(不可引用)
theorem _nf_decomp {x: set} (A: wff x): $ \nf x A $ > $ A \imp \fo x A $;
\iff引入\nf(不可引用)
theorem iff_intro_nf {x: set} (A B: wff x): $ A \iff B $ > $ \nf x A \iff \nf x B $;
\nf闭包\neg(不可引用)
theorem _nf_clos_neg {x: set} (A: wff x): $ \nf x A $ > $ \nf x \neg A $;
\nf闭包\imp(不可引用)
theorem _nf_clos_imp {x: set} (A B: wff x): $ \nf x A $ > $ \nf x B $ > $ \nf x (A \imp B) $;
\nf闭包\and(不可引用)
theorem _nf_clos_and {x: set} (A B: wff x): $ \nf x A $ > $ \nf x B $ > $ \nf x (A \and B) $;
\nf闭包\or(不可引用)
theorem _nf_clos_or {x: set} (A B: wff x): $ \nf x A $ > $ \nf x B $ > $ \nf x (A \or B) $;
\nf闭包\iff(不可引用)
theorem _nf_clos_iff {x: set} (A B: wff x): $ \nf x A $ > $ \nf x B $ > $ \nf x (A \iff B) $;
\nf闭包\fo不同变元(不可引用)
theorem _nf_clos_fo_difvar {x y: set} (A: wff x y): $ \nf x A $ > $ \nf x \fo y A $;
\nf闭包\ex不同变元(不可引用)
theorem _nf_clos_ex_difvar {x y: set} (A: wff x y): $ \nf x A $ > $ \nf x \ex y A $;
\nf闭包\nf不同变元(不可引用)
theorem _nf_clos_nf_difvar {x y: set} (A: wff x y): $ \nf x A $ > $ \nf x \nf y A $;
同变元\nf\ex(不可引用)
theorem _nf_ex_same {x: set} (A: wff x): $ \nf x \ex x A $;
同变元\nf\fo(不可引用)
theorem _nf_fo_same {x: set} (A: wff x): $ \nf x \fo x A $;
同变元\nf\nf(不可引用)
theorem _nf_nf_same {x: set} (A: wff x): $ \nf x \nf x A $;
\fo引入(无关)
theorem fo_intro_nf {x: set} (A: wff x): $ \nf x A $ > $ A \imp \fo x A $;
\ex消除(无关)
theorem ex_elim_nf {x: set} (A: wff x): $ \nf x A $ > $ \ex x A \imp A $;
\fo指配(无关)
theorem fo_alloc_nf {x: set} (A: wff x): $ \nf x A $ > $ A \iff \fo x A $;
\ex指配(无关)
theorem ex_alloc_nf {x: set} (A: wff x): $ \nf x A $ > $ A \iff \ex x A $;
\imp右侧引入\fo(左侧无关)
theorem imp_intrors_fo_nfls {x: set} (A B: wff x): $ \nf x A $ > $ A \imp B $ > $ A \imp \fo x B $;
\imp左侧引入\ex(右侧无关)
theorem imp_introls_ex_nfrs {x: set} (A B: wff x): $ \nf x B $ > $ A \imp B $ > $ \ex x A \imp B $;
带\ex的MP规则(无关)
theorem mpex_nfrs {x: set} (A B: wff x): $ \nf x B $ > $ A \imp B $ > $ \ex x A $ > $ B $;
\ex\fo交换
theorem ex_fo_swap {x y: set} (A: wff x y): $ \ex x \fo y A \imp \fo y \ex x A $;
\fo\imp分配左侧\ex(右侧无关)
theorem fo_imp_distls_ex_nfrs {x: set} (A B: wff x): $ \nf x B $ > $ \fo x (A \imp B) \iff \ex x A \imp B $;
\fo\imp分配右侧(左侧无关)
theorem fo_imp_distrs_nfls {x: set} (A B: wff x): $ \nf x A $ > $ \fo x (A \imp B) \iff A \imp \fo x B $;
\ex\imp分配左侧\fo(右侧无关)
theorem ex_imp_distls_fo_nfrs {x: set} (A B: wff x): $ \nf x B $ > $ \ex x (A \imp B) \iff \fo x A \imp B $;
\ex\imp分配右侧(左侧无关)
theorem ex_imp_distrs_nfls {x: set} (A B: wff x): $ \nf x A $ > $ \ex x (A \imp B) \iff A \imp \ex x B $;
\fo\and分配左侧(右侧不出现)
theorem fo_and_distls_nfrs {x: set} (A B: wff x): $ \nf x B $ > $ \fo x (A \and B) \iff \fo x A \and B $;
\fo\and分配右侧(左侧不出现)
theorem fo_and_distrs_nfls {x: set} (A B: wff x): $ \nf x A $ > $ \fo x (A \and B) \iff A \and \fo x B $;
\ex\and分配左侧(右侧不出现)
theorem ex_and_distls_nfrs {x: set} (A B: wff x): $ \nf x B $ > $ \ex x (A \and B) \iff \ex x A \and B $;
\ex\and分配右侧(左侧不出现)
theorem ex_and_distrs_nfls {x: set} (A B: wff x): $ \nf x A $ > $ \ex x (A \and B) \iff A \and \ex x B $;
\fo\or分配左侧(右侧不出现)
theorem fo_or_distls_nfrs {x: set} (A B: wff x): $ \nf x B $ > $ \fo x (A \or B) \iff \fo x A \or B $;
\fo\or分配右侧(左侧不出现)
theorem fo_or_distrs_nfls {x: set} (A B: wff x): $ \nf x A $ > $ \fo x (A \or B) \iff A \or \fo x B $;
\ex\or分配左侧(右侧不出现)
theorem ex_or_distls_nfrs {x: set} (A B: wff x): $ \nf x B $ > $ \ex x (A \or B) \iff \ex x A \or B $;
\ex\or分配右侧(左侧不出现)
theorem ex_or_distrs_nfls {x: set} (A B: wff x): $ \nf x A $ > $ \ex x (A \or B) \iff A \or \ex x B $;
intro_fo的假设无关形式(不可引用)
theorem _hyp_intro_fo {x: set} (G A: wff x): $ \nf x G $ > $ G \imp A $ > $ G \imp \fo x A $;
fomp的假设无关形式(不可引用)
theorem _hyp_fomp {x: set} (G A B: wff x): $ \nf x G $ > $ G \imp \fo x A \imp B $ > $ G \imp A $ > $ G \imp B $;
imp_intro_fo的假设无关形式(不可引用)
theorem _hyp_imp_intro_fo {x: set} (G A B: wff x): $ \nf x G $ > $ G \imp A \imp B $ > $ G \imp \fo x A \imp \fo x B $;
iff_intro_fo的假设无关形式(不可引用)
theorem _hyp_iff_intro_fo {x: set} (G A B: wff x): $ \nf x G $ > $ G \imp (A \iff B) $ > $ G \imp (\fo x A \iff \fo x B) $;
imp_intro_ex的假设无关形式(不可引用)
theorem _hyp_imp_intro_ex {x: set} (G A B: wff x): $ \nf x G $ > $ G \imp A \imp B $ > $ G \imp \ex x A \imp \ex x B $;
iff_intro_ex的假设无关形式(不可引用)
theorem _hyp_iff_intro_ex {x: set} (G A B: wff x): $ \nf x G $ > $ G \imp (A \iff B) $ > $ G \imp (\ex x A \iff \ex x B) $;
fo_alloc_prov的假设无关形式(不可引用)
theorem _hyp_fo_alloc_prov {x: set} (G A: wff x): $ \nf x G $ > $ G \imp A $ > $ G \imp (A \iff \fo x A) $;
imp_intrors_fo_nfls的假设和公式无关形式(不可引用)
theorem _hyp_imp_intrors_fo_nfls {x: set} (G A B: wff x): $ \nf x G $ > $ \nf x A $ > $ G \imp A \imp B $ > $ G \imp A \imp \fo x B $;
imp_introls_ex_nfrs的假设和公式无关形式(不可引用)
theorem _hyp_imp_introls_ex_nfrs {x: set} (G A B: wff x): $ \nf x G $ > $ \nf x B $ > $ G \imp A \imp B $ > $ G \imp \ex x A \imp B $;
mpex_nfrs的假设和公式无关形式(不可引用)
theorem _hyp_mpex_nfrs {x: set} (G A B: wff x): $ \nf x G $ > $ \nf x B $ > $ G \imp A \imp B $ > $ G \imp \ex x A $ > $ G \imp B $;
对不同变量的$ \sb y x A $的定义方式。
theorem sb_def_dif {x: set} (y: set) (A: wff x): $ \sb y x A \iff \fo x (x = y \imp A) $;
全称量词可以通过代入实例消去。
theorem fo_elim_sb {x: set} (y: set) (A: wff x): $ \fo x A \imp \sb y x A $;
如果有一个集合实例满足该公式,则存在一个集合满足该公式。
theorem sb_to_ex {x: set} (y: set) (A: wff x): $ \sb y x A \imp \ex x A $;
如果A与x无关,则A与[t/x]A等价。
theorem sb_alloc_nf {x: set} (y: set) (A: wff x): $ \nf x A $ > $ A \iff \sb y x A $;
intro_sb的假设无关形式。
theorem _hyp_intro_sb {x: set} (y: set) (G A: wff x): $ \nf x G $ > $ G \imp A $ > $ G \imp \sb y x A $;
替换操作对蕴涵的插入律。
theorem sb_imp_ins {x: set} (y: set) (A B: wff x): $ \sb y x (A \imp B) \imp \sb y x A \imp \sb y x B $;
替换操作对蕴涵的引入律
theorem imp_intro_sb {x: set} (y: set) (A B: wff x): $ A \imp B $ > $ \sb y x A \imp \sb y x B $;
imp_intro_sb的假设无关形式。
theorem _hyp_imp_intro_sb (G: wff) {x: set} (y: set) (A B: wff x): $ \nf x G $ > $ G \imp A \imp B $ > $ G \imp \sb y x A \imp \sb y x B $;
替换操作对等价的插入律
theorem sb_iff_ins {x: set} (y: set) (A B: wff x): $ \sb y x (A \iff B) \imp (\sb y x A \iff \sb y x B) $;
替换操作对等价的引入律
theorem iff_intro_sb {x: set} (y: set) (A B: wff x): $ A \iff B $ > $ \sb y x A \iff \sb y x B $;
iff_intro_sb的假设无关形式(不可引用)
theorem _hyp_iff_intro_sb {x: set} (y: set) (G A B: wff x): $ \nf x G $ > $ G \imp (A \iff B) $ > $ G \imp (\sb y x A \iff \sb y x B) $;
对公式A和集合变元x,y,若x=y,则将公式A中的z替换为x得到的公式与将公式A中的z替换为y得到的公式等价。
theorem eqs_to_sb_same_iff {z: set} (x y: set) (A: wff z): $ x = y \imp (\sb x z A \iff \sb y z A) $;